
Lean: Across the Board
Release 0.1.0

Julian Berman

Jul 25, 2023





CONTENTS

1 Contents 3
1.1 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

i



ii



Lean: Across the Board, Release 0.1.0

A fun attempt at learning some more Lean by implementing some theorems from the (great) Across the Board: The
Mathematics of Chessboard Problems book.
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1.1 API Reference

1.1.1 chess.board

Definitions and theorems about a chess board

Summary

The chess board is a set of indexed pieces on a playfield. A board is valid, and can only be constructed, if all the
pieces are present on the board, and no two distinct (by index) pieces share the same position on the board.

Main definitions

1. The board itself, which requires an indexed vector of pieces, and the playfieldwhich will serve as the where
those pieces are placed. Additionally, all pieces must be present on the playfield, and no two distinct (by index)
pieces can share a position on the playfield.

2. A way to reduce the board, following the indices to just the pieces. This allows comparison of boards that are
equivalent modulo permutation of indices that point to equivalent pieces.

3. board.piece_at, which extracts the piece which sits on a given square.

Implementation notes

1. A board requires finite dimensions for the playfield, finite indices, and a finite piece set. Ideally, this should
be generizable to potentially infinite types. However, since playfields are usually provided by matrix, which
is restricted to finite dimensions, it is easiest to define the board as finite.

2. The requirement of decidable_eq on the dimensions and index allows use of dec_trivial to automatically
infer proofs for board constraint propositions. That means instantiation of a boardwill not require explicit proofs
for the propositions.

3. The board does not define what are valid position comparisons – the geometry of the space is not defined other
than what the playfield provides.

4. Currently, all pieces are constrained by the definition of a board to be present on the playfield. That means no
capturing moves and no piece introduction moves are possible.
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constant chess.board
A board is axiomatized as a set of indexable (ergo distinguishable) pieces which are placed on distinct squares
of a playfield.

No inhabited instance because the index type can be larger than the cardinality of the playfield dimensions.

Fields:

field pieces

field contents

field contains

field injects

def board_repr
A board’s representation is just the concatentation of the representations of the pieces and contents via
board_repr_pieces and board_repr_contents, respectively, with newlines inserted for clarity.

def board_repr_contents
A board’s contents can be represented by reducing the board according to the indexed vector at pieces, and
placing the pieces on the playfield. We override the default option K representation by using option_wrap,
and supply an underscore to represent empty positions.

def board_repr_instance
A board’s representation is provided by board_repr.

def board_repr_pieces
A board’s pieces is a “vector”, so vec_repr is used to represent it.

def contents_decidable
Explicitly state that the proposition that an index ix : is in the board is decidable, when the is itself
decidable_eq.

def has_equiv

def has_mem

def height
The height of the board. Explicit argument for projection notation.

theorem inj_iff
Given that the board is occupied_at some pos : m × n, then the index at some pos' : m × n is equal
to the index at pos, iff that pos' is equal pos' = pos.

theorem no_superimposed
A board maps each index ix : to a unique position pos : m × n, stated explicitly. Uses the board.
injects constraint.

def piece_at
The (colored) piece on a given square.

def reduce
The state of the board, where pieces of the same type are equivalent

theorem retains_pieces
A board contains all of the ix : indices that it knows of, stated explicitly. Uses the board.contains con-
straint.

def width
The width of the board. Explicit argument for projection notation.
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1.1.2 chess.move

Definitions and theorems about chess board movements

Summary

A move on a particular board is a pair of squares whose start square contains a piece and whose end square does not.

Moves may be combined into sequences of moves, which encapsulate multiple sequential moves all iteratively satis-
fying the above condition.

Main definitions

1. The move itself, which requires specifying the particular board it will occur on

2. perform_move, which yields the boardwhose playfield has the start and end squares of a move suitably modified

3. A move sequence, rooted on a starting board, containing a sequence of start and end squares which can be
treated as iterated moves.

Implementation notes

1. move and sequence are implemented independently of each other. sequence.moves can be used to extract
a move from a particular index into a sequence. sequences are also currently finite, and therefore also may
automatically infer proofs of move conditions via dec_trivial.

2. Currently, no legality checks or piece math whatsoever is performed, meaning moves are not yet programmatically
confirmed to be legal. Captures are similarly not yet supported.

def chess.board.has_sequence_len
Assert the existence of a sequence of length o from a start_board to a given end board.

def chess.board.has_sequence_to
Assert the existence of a sequence from a start_board to a given end board.

constant chess.move
A move is a (distinct) start and end square whose start square is occupied and whose end square is not.

No inhabited instance because the board might be made up of a single occupied position.

(Captures are not implemented yet.)

Fields:

field start_square

field end_square

field occupied_start

field unoccupied_end

theorem after_occupied_end
End squares are occupied after a move.

theorem after_unoccupied_start
Start squares are unoccupied after a move.

theorem before_after_same
Other squares are unchanged after a move.
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theorem before_after_same_occupied
Other occupation are unchanged after a move.

theorem before_occupied_start
Start squares are occupied before a move.

theorem before_unoccupied_end
End squares are unoccupied before a move.

def decidable_eq

theorem diff_squares
The start and end squares of a move are distinct.

def fintype

theorem no_superimposed
Pieces do not become superimposed after a move.

def perform_move
A valid move on a board retains a valid board state.

def piece
The piece that is being moved.

theorem retains_injectivity
A move retains accesing indices injectively on the board it operates on.

theorem retains_surjectivity
A move retains all indices, ignoring empty squares, present on the board it operates on.

def scan_contents
Define the mapping of playfields after performing successive move_pieces using the pairs of positions in
the provided elements, starting from the start_board.

constant sequence
A move sequence represents a sequential set of moves from a starting board.

No inhabited instance because boards do not have an inhabited instance.

Fields:

field start_board

field elements

field all_occupied_start'

field all_unoccupied_end'

theorem sequence.all_occupied_start
Every scanned board is occupied at the start square of the upcoming move.

theorem sequence.all_unoccupied_end
Every scanned board is unoccupied at the end square of the upcoming move.

def sequence.boards
The board which results from applying the first ix0 + 1 moves in the sequence.

def sequence.contents_at
Shorthand for referring to the contents at a sequence index ix : fin (o + 1).

theorem sequence.contents_at_def
Shorthand for referring to the contents at a sequence index ix : fin (o + 1).
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def sequence.end_board
The board which results from applying all moves in the sequence.

theorem sequence.fixes_unmentioned_squares
Any square which is not the start_square or end_square of any move in the sequence is fixed across all
moves (i.e. contains the same piece or remains empty).

def sequence.moves
The ix0’th move in the sequence.

theorem sequence.no_superimposed
Pieces do not become superimposed after any move in a sequence.

theorem sequence.retains_injectivity
Every playfield in a sequence of moves injectively accesses the indices.

theorem sequence.retains_pieces
Pieces do not disappear after any move_piece in a sequence.

theorem sequence.retains_surjectivity
Every playfield in a sequence of moves contains all the indices it can.

theorem sequence.sequence_step
Any contents_at a step in the sequence is the result of performing a move_piece using the sequence.
elements at that step.

theorem sequence.sequence_zero
The first contents in a scan_contents sequence is of the start_board.

1.1.3 chess.move.legal

Legal chess move definitions and theorems

Summary

Legal chess moves are moves which satisfy the legal rules of chess. This includes both the mathematics of which
squares a given piece type can move to and the broader set of board conditions that must be satisfied (e.g. not moving
a king into check).

Only a subset of these rules are currently implemented below so far. Currently:

• knight move math

are what is implemented.

(No chess variants are currently implemented either.)

Main definitions

1. move.is_legal, which can decide whether a given move is legal

2. move.legal, which represents a move along with the above proof that the move.is_legal

3. board.moves_from, which given a position on the provided board, produces the set of legal moves which may
be performed from that square.

1.1. API Reference 7



Lean: Across the Board, Release 0.1.0

Implementation notes

1. moves_from is currently defined to return a finset, even though in theory topologically one could have boards
with infinitely many immediate next squares. This finiteness assumption will eventually need fixing in other
places, so it seems safe here for now.

2. The requirement of decidable_eq on the various types surrounding move.legal means that again
dec_trivial can automatically infer proofs for move legality without them being explicitly provided.

theorem chess.board.mem_moves_from
The finset of legal moves from a given square.

def chess.board.moves_from
The finset of legal moves from a given square.

def chess.board.moves_from.fintype

theorem chess.board.moves_from_def
The finset of legal moves from a given square.

def chess.move.adjacent
Two squares pos and pos' are adjacent (i.e. have no square between them).

def chess.move.adjacent.decidable_pred

def chess.move.between
The finite set of (presumably squares) between two elements of m (or n).

def chess.move.is_legal
A legal chess move.

def chess.move.is_legal_decidable

def chess.move.knight_move
A legal knight move moves 2 squares in one direction and 1 in the other.

def chess.move.knight_move.decidable_pred

constant chess.move.legal
A legal move is a move along with a proof that the move satisfies the rules of chess.

Fields:

field to_move

field legality

def fintype

def chess.move.one_gap
Two squares pos and pos' have exactly one square between them.

def chess.move.one_gap.decidable_pred

constant chess.move.sequence.legal
Fields:

field to_sequence

field legality

theorem chess.moves_from.unoccupied_zero
There are 0 legal moves from an unoccupied square.
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1.1.4 chess.piece

Chess piece implementation.

def chess.black_bishop

def chess.black_king

def chess.black_knight

def chess.black_pawn

def chess.black_queen

def chess.black_rook

constant chess.color

def chess.color.decidable_eq

def chess.color.fintype

constant chess.colored_piece
Fields:

field piece

field color

def chess.colored_piece.decidable_eq

def chess.colored_piece.fintype

def chess.has_coe
“Forget” a piece’s color.

def chess.has_repr

constant chess.piece

def decidable_eq

def fintype

def chess.piece_repr

def chess.white_bishop

def chess.white_king

def chess.white_knight

def chess.white_pawn

def chess.white_queen

def chess.white_rook
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1.1.5 chess.playfield

Definitions and theorems about the chess board field

Summary

The field on which chess pieces are placed is a 2D plane, where each position corresponds to a piece index. This is
because we think of defining pieces and moves, usually, by indicating which position they are at, and which position
they are moved to.

Main definitions

1. The playfield itself (playfield)

2. Conversion from a matrix of (possibly) occupied spaces to a playfield

3. Moving a piece by switching the indices at two specified positions using move_piece

4. Making a sequence of moves at once using move_sequence

Implementation details

1. The playfield type itself has no requirements to be finite in any dimension, or that the indices used are finite.
We represent the actual index wrapped by option, such that the empty square can be an option.none. The
playfield definition wraps the two types used to define the dimensions of the board into a pair.

2. In the current implementation, the way to construct a playfield is to provide a matrix. This limits the
playfield to a finite 2D plane. Another possible implementation is of a “sparse matrix”, where for each index,
we can look up where the piece is. This now allows for an infinite playfield, but still complicates using infinite
pieces. For now, the closely-tied matrix definition makes playfield a light type wrapper on top of matrix,
i.e. a function of two variables.

3. Currently, move_piece just swaps the (potentially absent) indices at two positions. This is done by using an
equiv.swap as an updating function. For now, this means that moves that use move_piece are non-capturing.
Additionally, no math or other requirements on the positions or their contents is required. This means that
move_piece supports a move from a position to itself. A separate move is defined in chess.move that has more
chess-like rule constraints.

4. Index presence on the board is not limited to have each index on at-most-one position. Preventing duplication of
indices is not enforced by the playfield itself. However, any given position can hold at-most-one index on it.
The actual chess-like rule constraints are in chess.board.

5. Sequences of moves are implemented on top of moves, rather than vice versa (moves being defined as sequences
of length one). This probably causes a bit of duplication, which may warrant flipping things later.

def matrix_to_playfield
A conversion function to turn a bare matrix into a playfield. A matrix requires the dimensions to be finite.

An example empty 3 × 3 playfield for 4 pieces could be generated by:

matrix_to_playfield ((
![![none, none, none],
![none, none, none],
![none, none, none]] : matrix (fin 3) (fin 3) (option (fin 4))
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where the positions are 0-indexed, with the origin in the top-left, first dimension for the row, and second dimen-
sion for the column (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

def playfield
A playfield m n represents a matrix (m × n) option , which is a model for a m × n shaped game board
where not every square is occupied.

theorem playfield.coe_occ_val
A pos : pf.occupied_positions can be used as a pos : m × n.

def playfield.decidable_pred
The predicate that pf.occupied_at pos for some pos is decidable if the indices ix : are finite and decid-
ably equal.

theorem playfield.exists_of_occupied
A pos : pf.occupied_positions' has the property that there is an
not-necessarily-uniqueix : such thatpf pos = some ix`.

theorem playfield.exists_unique_of_occupied
A pos : pf.occupied_positions' has the property that there is a necessarily-uniqueix
: such thatpf pos = some ix`.

theorem playfield.finite_occupied
When the playfield dimensions are all finite, the occupied_positions_set of all positions that are
occupied_at is a fintype.

def playfield.fintype

def playfield.fintype_occupied
When the playfield dimensions are all finite, the occupied_positions_set of all positions that are
occupied_at is finite.

def playfield.has_coe

def playfield.has_mem
A piece, identified by an index, is on the board, if there is any position such that the index at that position is the one
we’re inquiring about. Providing a has_mem instance allows using ix pf for ix : , pf : playfield
m n . This definition does not preclude duplicated indices on the playfield. See “Implementation details”.

def playfield.index_at
Extract the ix : that is at pf pos = some ix.

theorem playfield.index_at.implies_surjective
Index retrieval via pf is known to be surjective, given an surjectivity condition via function.surjective
pf.index_at and an unoccupied square somewhere.

theorem playfield.index_at.injective
Index retrieval via pf.index_at is known to be injective, given an injectivity condition via pf.
some_injective.

theorem playfield.index_at.surjective
Index retrieval via pf.index_at is known to be surjective, given an surjectivity condition via function.
surjective pf.

theorem playfield.index_at_def
Extract the ix : that is at pf pos = some ix.

theorem playfield.index_at_exists
The index retrieved via pf.index_at is known to be in the pf, in existential format.
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theorem playfield.index_at_exists'
The index retrieved via pf.index_at is known to be in the pf, in existential format, operating on the pf.
occupied_positions subtype.

theorem playfield.index_at_iff
For a pos : pf.occupied_positions, the wrapped index ix : given by pf.index_at pos is precisely
pf pos, in iff form.

theorem playfield.index_at_in
The index retrieved via pf.index_at is known to be in the pf.

theorem playfield.index_at_inj
Index retrieval via pf.index_at is known to be injective, given an injectivity condition via pf.
some_injective.

theorem playfield.index_at_inv_pos_from'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the right
inverse of pf.index_at is pf.pos_from'.

theorem playfield.index_at_mk
For a pos : m × n, and the hypothesis that h : pf pos = some ix, the index given by pf.index_at
(occupied_positions.mk _ h) is precisely ix.

theorem playfield.index_at_retains_surjectivity
If every index and the empty square is present in the pf : playfield m n , as given by a function.
surjective pf proposition, then each index is present on the playfield after a move_piece.

theorem playfield.index_at_some
For a pos : pf.occupied_positions, the wrapped index given by pf.index_at pos is precisely pf pos.

def playfield.index_equiv
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, there is
an explicit equivalence from the indices to the type of positions in pf.occupied_positions.

def playfield.inhabited
A playfield is by default inhabited by empty squares everywhere.

theorem playfield.inj_iff
When a pf : playfield m n is some_injective, if it is occupied at some pos : m × n, then it is
injective at that pos.

theorem playfield.inj_on_occupied
The injectivity of some_injective is equivalent to the set.inj_on proposition.

theorem playfield.injective
When a pf : playfield m n is some_injective, if it is not empty at some pos : m × n, then it is
injective at that pos.

def playfield.move_piece
Move an (optional) index from start_square to end_square on a playfield, swapping the indices at those
squares.

Does not assume anything about occupancy.

theorem playfield.move_piece_def
Equivalent to to move_piece, but useful for rewrite ing.

theorem playfield.move_piece_diff
Moving an (optional) index retains whatever (optional) indices that were at other squares.

theorem playfield.move_piece_end
Moving an (optional) index that was at end_square places it at start_square
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theorem playfield.move_piece_occupied_diff
The pf : playfield m n is occupied_at other_square after a move_piece, for a pos that is neither
start_square nor end_square, iff it is occupied_at other_square before the piece move.

theorem playfield.move_piece_occupied_end
The pf : playfield m n is occupied_at end_square after a move_piece iff it is occupied_at
start_square before the piece move.

theorem playfield.move_piece_occupied_start
The pf : playfield m n is occupied_at start_square after a move_piece iff it is occupied_at
end_square before the piece move.

theorem playfield.move_piece_start
Moving an (optional) index that was at start_square places it at end_square

def playfield.move_sequence
Make a sequence of moves all at once.

theorem playfield.move_sequence_def
Equivalent to to move_sequence, but useful for rewrite ing.

theorem playfield.move_sequence_diff
Throughout a sequence, moving an (optional) index retains whatever (optional) indices that were at other squares
on the next board.

theorem playfield.move_sequence_end
Throughout a sequence, moving an (optional) index that was at end_square places it at start_square on the
next board.

theorem playfield.move_sequence_start
Throughout a sequence, moving an (optional) index that was at start_square places it at end_square on the
next board.

theorem playfield.nonempty_pos
Given a surjectivity condition of pf.index_at, the type of pos : pf.occupied_positions that identify a
particular index is a nonempty.

theorem playfield.not_occupied_at_iff
A pos : m × n is unoccupied iff it is none.

theorem playfield.not_occupied_has_none
If for some pf : playfield m n , at pos : m × n, pf pos = none, then that is equivalent to ¬ pf.
occupied_at pos.

def playfield.occ_set_decidable
The predicate that p, p pf.occupied_position_set for some pos is decidable if the indices ix : are
finite and decidably equal.

def playfield.occupied_at
A wrapper to indicate that there is some ix : such that for a pf : playfield m n , at pos : m × n,
pf pos = some ix.

theorem playfield.occupied_at_def
A wrapper to indicate that there is some ix : such that for a pf : playfield m n , at pos : m × n,
pf pos = some ix.

theorem playfield.occupied_at_iff
A wrapper to indicate that there is some ix : such that for a pf : playfield m n , at pos : m × n,
pf pos = some ix.
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theorem playfield.occupied_at_of_ne
If for some pf : playfield m n , at pos : m × n, pf pos none, then that is equivalent to pf.
occupied_at pos.

theorem playfield.occupied_at_of_some
If for some pf : playfield m n , at pos : m × n, pf pos = some ix, then that is equivalent to pf.
occupied_at pos.

theorem playfield.occupied_at_transfer
If for some pf : playfield m n , at pos : m × n, pf.occupied_at pos, then for a pos' : m × n
such that pf pos = pf pos', we have that pf.occupied_at pos'.

theorem playfield.occupied_at_unique
A pf : playfield m n maps any occupied pos uniquely.

def playfield.occupied_fintype
The occupied_positions of a pf : playfield m n are finite if the dimensions of the playfield and the
indices are finite.

theorem playfield.occupied_has_not_none
A wrapper API for converting between inequalities and existentials.

theorem playfield.occupied_has_some
A wrapper API for underlying option.is_some propositions.

theorem playfield.occupied_is_some
A pos : pf.occupied_positions' has the property that pf pos is occupied.

def playfield.occupied_position_finset
The finset of all positions that are occupied_at, when all the dimensions of the playfield are fintype.

def playfield.occupied_positions
The set of all positions that are occupied_at.

def playfield.occupied_positions.mk
Given some ix : such that for pf : playfield m n and pos : m × n, pf pos = some ix, we can
subtype into pos : pf.occupied_positions.

theorem playfield.occupied_positions_def
Given some ix : such that for pf : playfield m n and pos : m × n, pf pos = some ix, we can
subtype into pos : pf.occupied_positions.

theorem playfield.occupied_positions_in
The pos : m × n that is in pf.occupied_positions by definition is the proposition that pf.occupied_at
pos.

theorem playfield.occupied_some_injective
The injectivity of pf.some_injective extends to the pf.occupied_positions subtype.

theorem playfield.occupied_unique_of_injective
The index retrieved via pf.index_at is known to be unique in the pf, given an injectivity condition via pf.
some_injective.

def playfield.playfield_decidable_in

def playfield.playfield_repr_instance

def playfield.pos_from
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the type
there exists a pos : m × n' such thatpf pos = some ix`.
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def playfield.pos_from'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, we can
retrieve the pos : pf.occupied_positions such that pf.index_at pos = ix.

theorem playfield.pos_from.injective
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the func-
tion pf.pos_from is injective.

theorem playfield.pos_from_at
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, round-
tripping to get the pf (pf.pos_from ix _ _) is exactly some ix,

theorem playfield.pos_from_at'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, round-
tripping to get the pf (pf.pos_from' ix _ _) is exactly some ix, which goes through the coercion down to
pos : m × n.

def playfield.pos_from_aux
A helper subtype definition describing all the positions that match an index.

No inhabited instance exists because the type could be empty, if none of the positions of the playfield have this
index.

theorem playfield.pos_from_aux_subtype
A helper subtype definition describing all the positions that match an index.

def playfield.pos_from_auxf
A helper finset definition describing all the positions that match an index.

theorem playfield.pos_from_auxf_finset
A helper finset definition describing all the positions that match an index.

theorem playfield.pos_from_auxf_in
A helper finset definition describing all the positions that match an index.

theorem playfield.pos_from_auxf_set
A helper set definition describing all the positions that match an index.

theorem playfield.pos_from_def
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the type
there exists a pos : m × n' such thatpf pos = some ix`.

theorem playfield.pos_from_def'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, we can
retrieve the pos : pf.occupied_positions such that pf.index_at pos = ix.

theorem playfield.pos_from_index_at'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, round-
tripping to get the pf.index_at (pf.pos_from' ix _ _) is exactly ix.

theorem playfield.pos_from_inv
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the partial
inverse of pf.pos_from is pf itself.

theorem playfield.pos_from_inv_index_at'
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the left
inverse of pf.index_at is pf.pos_from'.

theorem playfield.pos_from_occupied
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the po-
sition retrieved via pf.pos_from means that the pf is occupied_at it.
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theorem playfield.retains_injectivity
Each index that is present on the playfield and appears only once, appears only once after a move_piece.

theorem playfield.retains_pieces
Pieces do not disappear after a move_piece.

theorem playfield.retains_surjectivity
If every index and the empty square is present in the pf : playfield m n , as given by a function.
surjective pf proposition, then each index is present on the playfield after a move_piece.

def playfield.some_injective
A playfield on which every index that appears, appears only once.

def playfield.some_injective_decidable
Explicitly state that the proposition that pf.some_injective is decidable, when the is itself decidable_eq.

theorem playfield.subsingleton_pos
Given an injectivity condition of pf.some_injective, the type of pos : pf.occupied_positions that
identify a particular index is a subsingleton.

theorem playfield.unique_of_injective
When a pf : playfield m n is some_injective, every index ix : pf exists in the pf uniquely.

theorem playfield.unique_of_occupied
When a pf : playfield m n is some_injective, every pos : pf.occupied_positions maps to a
unique index via pf pos.

theorem playfield.unique_pos
Given a surjectivity condition of pf.index_at, and an injectivity condition of pf.some_injective, the type
of pos : pf.occupied_positions that identify a particular index is a unique.

1.1.6 chess.utils

Helpers that don’t currently fit elsewhere. . .

def matrix_repr
For a matrix X^(m' × n') where the X has a has_repr instance itself, we can provide a has_repr for the
matrix, using vec_repr for each of the rows of the matrix. This definition is used for displaying the playfield,
when it is defined via a matrix, likely through notation.

def matrix_repr_instance

def option_wrap
Construct an option_wrapper term from a provided option X and the string that will override the
has_repr.repr for none.

constant option_wrapper
An auxiliary wrapper for option X that allows for overriding the has_repr instance for option, and rather,
output just the value in the some and a custom provided string for none.

Fields:

field val

field none_s

def vec_repr
For a “vector” X^n' represented by the type n' : , fin n' → X, where the X has a has_repr instance
itself, we can provide a has_repr for the “vector”. This definition is used for displaying rows of the playfield,
when it is defined via a matrix, likely through notation.

def vec_repr_instance
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def wrapped_option_repr

theorem split_eq

1.1.7 guarini

“Proof” of Guarini’s Problem: swapping some knights.

Given a board like:

_
_ _ _
_

Guarini’s problem asks for a sequence of moves that swaps the knights, producing:

_
_ _ _
_

Solution:

_ _ _ _ _ _ _
_ _ _ → _ _ → _ _ → _ _ _ → _ _
_ _ _ _ _ _

_ _ _ _ _ _ _
→ _ _ → _ _ → _ → _ _
_ _ _ _ _ _

_ _ _ _
→ _ _ → _ _ → _ → _
_ _ _ _ _ _ _ _ _ _

_ _
→ _ → _ _ → _ _ _ → _ _ _
_ _ _ _ _ _ _ _ _

def ending_position

def first_move

theorem guarini

def guarini_seq

def starting_position
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