

Lean Across the Board

[image: Build status] [https://github.com/Julian/lean-across-the-board/actions?query=workflow%3ACI] [image: ReadTheDocs status] [https://lean-across-the-board.readthedocs.io/en/latest/]

A fun attempt at learning some more Lean [https://leanprover.github.io/] by implementing some theorems from the
(great) Across the Board: The Mathematics of Chessboard Problems [https://press.princeton.edu/books/paperback/9780691154985/across-the-board]
book.

Contents

	API Reference
	chess.board

	chess.move

	chess.move.legal

	chess.piece

	chess.playfield

	chess.utils

	guarini

API Reference

chess.board

Definitions and theorems about a chess board

Summary

The chess board is a set of indexed pieces on a playfield. A
board is valid, and can only be constructed, if all the pieces are
present on the board, and no two distinct (by index) pieces share the
same position on the board.

Main definitions

	The board itself, which requires an indexed vector of
pieces, and the playfield which will serve as the where
those pieces are placed. Additionally, all pieces must be present on
the playfield, and no two distinct (by index) pieces can share a
position on the playfield.

	A way to reduce the board, following the indices to just the pieces.
This allows comparison of boards that are equivalent modulo
permutation of indices that point to equivalent pieces.

	board.piece_at, which extracts the piece which sits on a given
square.

Implementation notes

	A board requires finite dimensions for the playfield, finite
indices, and a finite piece set. Ideally, this should be generizable
to potentially infinite types. However, since playfields are
usually provided by matrix, which is restricted to finite
dimensions, it is easiest to define the board as finite.

	The requirement of decidable_eq on the dimensions and index
allows use of dec_trivial to automatically infer proofs for board
constraint propositions. That means instantiation of a board will
not require explicit proofs for the propositions.

	The board does not define what are valid position comparisons – the
geometry of the space is not defined other than what the
playfield provides.

	Currently, all pieces are constrained by the definition of a board to
be present on the playfield. That means no capturing moves and no
piece introduction moves are possible.

	
constant chess.board

	A board is axiomatized as a set of indexable (ergo distinguishable)
pieces which are placed on distinct squares of a playfield.

No inhabited instance because the index type can be larger than the
cardinality of the playfield dimensions.

Fields:

	
field pieces

	

	
field contents

	

	
field contains

	

	
field injects

	

	
def board_repr

	A board’s representation is just the concatentation of the
representations of the pieces and contents via
board_repr_pieces and board_repr_contents, respectively, with
newlines inserted for clarity.

	
def board_repr_contents

	A board’s contents can be represented by reducing the board
according to the indexed vector at pieces, and placing the pieces on
the playfield. We override the default option K representation
by using option_wrap, and supply an underscore to represent empty
positions.

	
def board_repr_instance

	A board’s representation is provided by board_repr.

	
def board_repr_pieces

	A board’s pieces is a “vector”, so vec_repr is used to represent
it.

	
def contents_decidable

	Explicitly state that the proposition that an index ix : ι is in the
board is decidable, when the ι is itself decidable_eq.

	
def has_equiv

	

	
def has_mem

	

	
def height

	The height of the board. Explicit argument for projection notation.

	
theorem inj_iff

	Given that the board is occupied_at some pos : m × n, then the
index at some pos' : m × n is equal to the index at pos, iff
that pos' is equal pos' = pos.

	
theorem no_superimposed

	A board maps each index ix : ι to a unique position pos : m × n,
stated explicitly. Uses the board.injects constraint.

	
def piece_at

	The (colored) piece on a given square.

	
def reduce

	The state of the board, where pieces of the same type are equivalent

	
theorem retains_pieces

	A board contains all of the ix : ι indices that it knows of, stated
explicitly. Uses the board.contains constraint.

	
def width

	The width of the board. Explicit argument for projection notation.

chess.move

Definitions and theorems about chess board movements

Summary

A move on a particular board is a pair of squares whose start
square contains a piece and whose end square does not.

Moves may be combined into sequences of moves, which encapsulate
multiple sequential moves all iteratively satisfying the above
condition.

Main definitions

	The move itself, which requires specifying the particular
board it will occur on

	perform_move, which yields the board whose playfield has the
start and end squares of a move suitably modified

	A move sequence, rooted on a starting board, containing a
sequence of start and end squares which can be treated as iterated
moves.

Implementation notes

	move and sequence are implemented independently of each
other. sequence.moves can be used to extract a move from a
particular index into a sequence. sequences are also
currently finite, and therefore also may automatically infer proofs
of move conditions via dec_trivial.

	Currently, no legality checks or piece math whatsoever is performed,
meaning moves are not yet programmatically confirmed to be
legal. Captures are similarly not yet supported.

	
def chess.board.has_sequence_len

	Assert the existence of a sequence of length o from a
start_board to a given end board.

	
def chess.board.has_sequence_to

	Assert the existence of a sequence from a start_board to a given
end board.

	
constant chess.move

	A move is a (distinct) start and end square whose start square is
occupied and whose end square is not.

No inhabited instance because the board might be made up of a single
occupied position.

(Captures are not implemented yet.)

Fields:

	
field start_square

	

	
field end_square

	

	
field occupied_start

	

	
field unoccupied_end

	

	
theorem after_occupied_end

	End squares are occupied after a move.

	
theorem after_unoccupied_start

	Start squares are unoccupied after a move.

	
theorem before_after_same

	Other squares are unchanged after a move.

	
theorem before_after_same_occupied

	Other occupation are unchanged after a move.

	
theorem before_occupied_start

	Start squares are occupied before a move.

	
theorem before_unoccupied_end

	End squares are unoccupied before a move.

	
def decidable_eq

	

	
theorem diff_squares

	The start and end squares of a move are distinct.

	
def fintype

	

	
theorem no_superimposed

	Pieces do not become superimposed after a move.

	
def perform_move

	A valid move on a board retains a valid board state.

	
def piece

	The piece that is being moved.

	
theorem retains_injectivity

	A move retains accesing indices injectively on the board it
operates on.

	
theorem retains_surjectivity

	A move retains all indices, ignoring empty squares, present on the
board it operates on.

	
def scan_contents

	Define the mapping of playfields after performing successive
move_pieces using the pairs of positions in the provided
elements, starting from the start_board.

	
constant sequence

	A move sequence represents a sequential set of moves from a starting
board.

No inhabited instance because boards do not have an inhabited instance.

Fields:

	
field start_board

	

	
field elements

	

	
field all_occupied_start'

	

	
field all_unoccupied_end'

	

	
theorem sequence.all_occupied_start

	Every scanned board is occupied at the start square of the upcoming
move.

	
theorem sequence.all_unoccupied_end

	Every scanned board is unoccupied at the end square of the upcoming
move.

	
def sequence.boards

	The board which results from applying the first ix₀ + 1 moves
in the sequence.

	
def sequence.contents_at

	Shorthand for referring to the contents at a sequence index
ixₒ : fin (o + 1).

	
theorem sequence.contents_at_def

	Shorthand for referring to the contents at a sequence index
ixₒ : fin (o + 1).

	
def sequence.end_board

	The board which results from applying all moves in the
sequence.

	
theorem sequence.fixes_unmentioned_squares

	Any square which is not the start_square or end_square of any
move in the sequence is fixed across all moves
(i.e. contains the same piece or remains empty).

	
def sequence.moves

	The ix₀’th move in the sequence.

	
theorem sequence.no_superimposed

	Pieces do not become superimposed after any move in a sequence.

	
theorem sequence.retains_injectivity

	Every playfield in a sequence of moves injectively accesses the
indices.

	
theorem sequence.retains_pieces

	Pieces do not disappear after any move_piece in a sequence.

	
theorem sequence.retains_surjectivity

	Every playfield in a sequence of moves contains all the indices it
can.

	
theorem sequence.sequence_step

	Any contents_at a step in the sequence is the result of
performing a move_piece using the sequence.elements at that
step.

	
theorem sequence.sequence_zero

	The first contents in a scan_contents sequence is of the
start_board.

chess.move.legal

Legal chess move definitions and theorems

Summary

Legal chess moves are moves which satisfy the legal rules of
chess. This includes both the mathematics of which squares a given
piece type can move to and the broader set of board conditions
that must be satisfied (e.g. not moving a king into check).

Only a subset of these rules are currently implemented below so far.
Currently:

	knight move math

are what is implemented.

(No chess variants are currently implemented either.)

Main definitions

	move.is_legal, which can decide whether a given move is legal

	move.legal, which represents a move along with the above
proof that the move.is_legal

	board.moves_from, which given a position on the provided
board, produces the set of legal moves which may be performed
from that square.

Implementation notes

	moves_from is currently defined to return a finset, even
though in theory topologically one could have boards with infinitely
many immediate next squares. This finiteness assumption will
eventually need fixing in other places, so it seems safe here for
now.

	The requirement of decidable_eq on the various types surrounding
move.legal means that again dec_trivial can automatically
infer proofs for move legality without them being explicitly
provided.

	
theorem chess.board.mem_moves_from

	The finset of legal moves from a given square.

	
def chess.board.moves_from

	The finset of legal moves from a given square.

	
def chess.board.moves_from.fintype

	

	
theorem chess.board.moves_from_def

	The finset of legal moves from a given square.

	
def chess.move.adjacent

	Two squares pos and pos' are adjacent (i.e. have no square
between them).

	
def chess.move.adjacent.decidable_pred

	

	
def chess.move.between

	The finite set of (presumably squares) between two elements of m (or
n).

	
def chess.move.is_legal

	A legal chess move.

	
def chess.move.is_legal_decidable

	

	
def chess.move.knight_move

	A legal knight move moves 2 squares in one direction and 1 in the other.

	
def chess.move.knight_move.decidable_pred

	

	
constant chess.move.legal

	A legal move is a move along with a proof that the move satisfies
the rules of chess.

Fields:

	
field to_move

	

	
field legality

	

	
def fintype

	

	
def chess.move.one_gap

	Two squares pos and pos' have exactly one square between them.

	
def chess.move.one_gap.decidable_pred

	

	
constant chess.move.sequence.legal

	Fields:

	
field to_sequence

	

	
field legality

	

	
theorem chess.moves_from.unoccupied_zero

	There are 0 legal moves from an unoccupied square.

chess.piece

Chess piece implementation.

	
def chess.black_bishop

	

	
def chess.black_king

	

	
def chess.black_knight

	

	
def chess.black_pawn

	

	
def chess.black_queen

	

	
def chess.black_rook

	

	
constant chess.color

	

	
def chess.color.decidable_eq

	

	
def chess.color.fintype

	

	
constant chess.colored_piece

	Fields:

	
field piece

	

	
field color

	

	
def chess.colored_piece.decidable_eq

	

	
def chess.colored_piece.fintype

	

	
def chess.has_coe

	“Forget” a piece’s color.

	
def chess.has_repr

	

	
constant chess.piece

	

	
def decidable_eq

	

	
def fintype

	

	
def chess.piece_repr

	

	
def chess.white_bishop

	

	
def chess.white_king

	

	
def chess.white_knight

	

	
def chess.white_pawn

	

	
def chess.white_queen

	

	
def chess.white_rook

	

chess.playfield

Definitions and theorems about the chess board field

Summary

The field on which chess pieces are placed is a 2D plane, where each
position corresponds to a piece index. This is because we think of
defining pieces and moves, usually, by indicating which position they
are at, and which position they are moved to.

Main definitions

	The playfield itself (playfield)

	Conversion from a matrix of (possibly) occupied spaces to a
playfield

	Moving a piece by switching the indices at two specified positions
using move_piece

	Making a sequence of moves at once using move_sequence

Implementation details

	The playfield type itself has no requirements to be finite in any
dimension, or that the indices used are finite. We represent the
actual index wrapped by option, such that the empty square can be
an option.none. The playfield definition wraps the two types used
to define the dimensions of the board into a pair.

	In the current implementation, the way to construct a playfield
is to provide a matrix. This limits the playfield to a finite 2D
plane. Another possible implementation is of a “sparse matrix”, where
for each index, we can look up where the piece is. This now allows
for an infinite playfield, but still complicates using infinite
pieces. For now, the closely-tied matrix definition makes
playfield a light type wrapper on top of matrix, i.e. a
function of two variables.

	Currently, move_piece just swaps the (potentially absent) indices
at two positions. This is done by using an equiv.swap as an
updating function. For now, this means that moves that use
move_piece are non-capturing. Additionally, no math or other
requirements on the positions or their contents is required. This
means that move_piece supports a move from a position to itself.
A separate move is defined in chess.move that has more
chess-like rule constraints.

	Index presence on the board is not limited to have each index on
at-most-one position. Preventing duplication of indices is not
enforced by the playfield itself. However, any given position can
hold at-most-one index on it. The actual chess-like rule constraints
are in chess.board.

	Sequences of moves are implemented on top of moves, rather than
vice versa (moves being defined as sequences of length one).
This probably causes a bit of duplication, which may warrant
flipping things later.

	
def matrix_to_playfield

	A conversion function to turn a bare matrix into a playfield. A
matrix requires the dimensions to be finite.

An example empty 3 × 3 playfield for 4 pieces could be generated by:

matrix_to_playfield ((
 ![![none, none, none],
 ![none, none, none],
 ![none, none, none]] : matrix (fin 3) (fin 3) (option (fin 4))

where the positions are 0-indexed, with the origin in the top-left,
first dimension for the row, and second dimension for the column (0,0)
(0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

	
def playfield

	A playfield m n ι represents a matrix (m × n) option ι, which is
a model for a m × n shaped game board where not every square is
occupied.

	
theorem playfield.coe_occ_val

	A pos : pf.occupied_positions can be used as a pos : m × n.

	
def playfield.decidable_pred

	The predicate that pf.occupied_at pos for some pos is decidable if
the indices ix : ι are finite and decidably equal.

	
theorem playfield.exists_of_occupied

	A
pos : pf.occupied_positions' has the property that there is an not-necessarily-uniqueix
: ιsuch thatpf pos = some ix`.

	
theorem playfield.exists_unique_of_occupied

	A
pos : pf.occupied_positions' has the property that there is a necessarily-uniqueix
: ιsuch thatpf pos = some ix`.

	
theorem playfield.finite_occupied

	When the playfield dimensions are all finite, the
occupied_positions_set of all positions that are occupied_at is
a fintype.

	
def playfield.fintype

	

	
def playfield.fintype_occupied

	When the playfield dimensions are all finite, the
occupied_positions_set of all positions that are occupied_at is
finite.

	
def playfield.has_coe

	

	
def playfield.has_mem

	A piece, identified by an index, is on the board, if there is any
position such that the index at that position is the one we’re inquiring
about. Providing a has_mem instance allows using ix ∈ pf for
ix : ι, pf : playfield m n ι. This definition does not preclude
duplicated indices on the playfield. See “Implementation details”.

	
def playfield.index_at

	Extract the ix : ι that is at pf pos = some ix.

	
theorem playfield.index_at.implies_surjective

	Index retrieval via pf is known to be surjective, given an
surjectivity condition via function.surjective pf.index_at and an
unoccupied square somewhere.

	
theorem playfield.index_at.injective

	Index retrieval via pf.index_at is known to be injective, given an
injectivity condition via pf.some_injective.

	
theorem playfield.index_at.surjective

	Index retrieval via pf.index_at is known to be surjective, given an
surjectivity condition via function.surjective pf.

	
theorem playfield.index_at_def

	Extract the ix : ι that is at pf pos = some ix.

	
theorem playfield.index_at_exists

	The index retrieved via pf.index_at is known to be in the pf, in
existential format.

	
theorem playfield.index_at_exists'

	The index retrieved via pf.index_at is known to be in the pf, in
existential format, operating on the pf.occupied_positions subtype.

	
theorem playfield.index_at_iff

	For a pos : pf.occupied_positions, the wrapped index ix : ι
given by pf.index_at pos is precisely pf pos, in iff form.

	
theorem playfield.index_at_in

	The index retrieved via pf.index_at is known to be in the pf.

	
theorem playfield.index_at_inj

	Index retrieval via pf.index_at is known to be injective, given an
injectivity condition via pf.some_injective.

	
theorem playfield.index_at_inv_pos_from'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the right inverse of pf.index_at
is pf.pos_from'.

	
theorem playfield.index_at_mk

	For a pos : m × n, and the hypothesis that h : pf pos = some ix,
the index given by pf.index_at (occupied_positions.mk _ h) is
precisely ix.

	
theorem playfield.index_at_retains_surjectivity

	If every index and the empty square is present in the
pf : playfield m n ι, as given by a function.surjective pf
proposition, then each index is present on the playfield after a
move_piece.

	
theorem playfield.index_at_some

	For a pos : pf.occupied_positions, the wrapped index given by
pf.index_at pos is precisely pf pos.

	
def playfield.index_equiv

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, there is an explicit equivalence
from the indices ι to the type of positions in
pf.occupied_positions.

	
def playfield.inhabited

	A playfield is by default inhabited by empty squares everywhere.

	
theorem playfield.inj_iff

	When a pf : playfield m n ι is some_injective, if it is occupied
at some pos : m × n, then it is injective at that pos.

	
theorem playfield.inj_on_occupied

	The injectivity of some_injective is equivalent to the
set.inj_on proposition.

	
theorem playfield.injective

	When a pf : playfield m n ι is some_injective, if it is not
empty at some pos : m × n, then it is injective at that pos.

	
def playfield.move_piece

	Move an (optional) index from start_square to end_square on a
playfield, swapping the indices at those squares.

Does not assume anything about occupancy.

	
theorem playfield.move_piece_def

	Equivalent to to move_piece, but useful for rewrite ing.

	
theorem playfield.move_piece_diff

	Moving an (optional) index retains whatever (optional) indices that were
at other squares.

	
theorem playfield.move_piece_end

	Moving an (optional) index that was at end_square places it at
start_square

	
theorem playfield.move_piece_occupied_diff

	The pf : playfield m n ι is occupied_at other_square after a
move_piece, for a pos that is neither start_square nor
end_square, iff it is occupied_at other_square before the piece
move.

	
theorem playfield.move_piece_occupied_end

	The pf : playfield m n ι is occupied_at end_square after a
move_piece iff it is occupied_at start_square before the piece
move.

	
theorem playfield.move_piece_occupied_start

	The pf : playfield m n ι is occupied_at start_square after a
move_piece iff it is occupied_at end_square before the piece
move.

	
theorem playfield.move_piece_start

	Moving an (optional) index that was at start_square places it at
end_square

	
def playfield.move_sequence

	Make a sequence of moves all at once.

	
theorem playfield.move_sequence_def

	Equivalent to to move_sequence, but useful for rewrite ing.

	
theorem playfield.move_sequence_diff

	Throughout a sequence, moving an (optional) index retains whatever
(optional) indices that were at other squares on the next board.

	
theorem playfield.move_sequence_end

	Throughout a sequence, moving an (optional) index that was at
end_square places it at start_square on the next board.

	
theorem playfield.move_sequence_start

	Throughout a sequence, moving an (optional) index that was at
start_square places it at end_square on the next board.

	
theorem playfield.nonempty_pos

	Given a surjectivity condition of pf.index_at, the type of
pos : pf.occupied_positions that identify a particular index is a
nonempty.

	
theorem playfield.not_occupied_at_iff

	A pos : m × n is unoccupied iff it is none.

	
theorem playfield.not_occupied_has_none

	If for some pf : playfield m n ι, at pos : m × n,
pf pos = none, then that is equivalent to ¬ pf.occupied_at pos.

	
def playfield.occ_set_decidable

	The predicate that λ p, p ∈ pf.occupied_position_set for some pos is
decidable if the indices ix : ι are finite and decidably equal.

	
def playfield.occupied_at

	A wrapper to indicate that there is some ix : ι such that for a
pf : playfield m n ι, at pos : m × n, pf pos = some ix.

	
theorem playfield.occupied_at_def

	A wrapper to indicate that there is some ix : ι such that for a
pf : playfield m n ι, at pos : m × n, pf pos = some ix.

	
theorem playfield.occupied_at_iff

	A wrapper to indicate that there is some ix : ι such that for a
pf : playfield m n ι, at pos : m × n, pf pos = some ix.

	
theorem playfield.occupied_at_of_ne

	If for some pf : playfield m n ι, at pos : m × n,
pf pos ≠ none, then that is equivalent to pf.occupied_at pos.

	
theorem playfield.occupied_at_of_some

	If for some pf : playfield m n ι, at pos : m × n,
pf pos = some ix, then that is equivalent to pf.occupied_at pos.

	
theorem playfield.occupied_at_transfer

	If for some pf : playfield m n ι, at pos : m × n,
pf.occupied_at pos, then for a pos' : m × n such that
pf pos = pf pos', we have that pf.occupied_at pos'.

	
theorem playfield.occupied_at_unique

	A pf : playfield m n ι maps any occupied pos uniquely.

	
def playfield.occupied_fintype

	The occupied_positions of a pf : playfield m n ι are finite if
the dimensions of the playfield and the indices are finite.

	
theorem playfield.occupied_has_not_none

	A wrapper API for converting between inequalities and existentials.

	
theorem playfield.occupied_has_some

	A wrapper API for underlying option.is_some propositions.

	
theorem playfield.occupied_is_some

	A pos : pf.occupied_positions' has the property that pf pos is
occupied.

	
def playfield.occupied_position_finset

	The finset of all positions that are occupied_at, when all the
dimensions of the playfield are fintype.

	
def playfield.occupied_positions

	The set of all positions that are occupied_at.

	
def playfield.occupied_positions.mk

	Given some ix : ι such that for pf : playfield m n ι and
pos : m × n, pf pos = some ix, we can subtype into
pos : pf.occupied_positions.

	
theorem playfield.occupied_positions_def

	Given some ix : ι such that for pf : playfield m n ι and
pos : m × n, pf pos = some ix, we can subtype into
pos : pf.occupied_positions.

	
theorem playfield.occupied_positions_in

	The pos : m × n that is in pf.occupied_positions by definition
is the proposition that pf.occupied_at pos.

	
theorem playfield.occupied_some_injective

	The injectivity of pf.some_injective extends to the
pf.occupied_positions subtype.

	
theorem playfield.occupied_unique_of_injective

	The index retrieved via pf.index_at is known to be unique in the
pf, given an injectivity condition via pf.some_injective.

	
def playfield.playfield_decidable_in

	

	
def playfield.playfield_repr_instance

	

	
def playfield.pos_from

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the type there exists a
pos : m × n' such thatpf pos = some ix`.

	
def playfield.pos_from'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, we can retrieve the
pos : pf.occupied_positions such that pf.index_at pos = ix.

	
theorem playfield.pos_from.injective

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the function pf.pos_from is
injective.

	
theorem playfield.pos_from_at

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, round-tripping to get the
pf (pf.pos_from ix _ _) is exactly some ix,

	
theorem playfield.pos_from_at'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, round-tripping to get the
pf (pf.pos_from' ix _ _) is exactly some ix, which goes through
the coercion down to pos : m × n.

	
def playfield.pos_from_aux

	A helper subtype definition describing all the positions that match an
index.

No inhabited instance exists because the type could be empty, if none of
the positions of the playfield have this index.

	
theorem playfield.pos_from_aux_subtype

	A helper subtype definition describing all the positions that match an
index.

	
def playfield.pos_from_auxf

	A helper finset definition describing all the positions that match an
index.

	
theorem playfield.pos_from_auxf_finset

	A helper finset definition describing all the positions that match an
index.

	
theorem playfield.pos_from_auxf_in

	A helper finset definition describing all the positions that match an
index.

	
theorem playfield.pos_from_auxf_set

	A helper set definition describing all the positions that match an
index.

	
theorem playfield.pos_from_def

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the type there exists a
pos : m × n' such thatpf pos = some ix`.

	
theorem playfield.pos_from_def'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, we can retrieve the
pos : pf.occupied_positions such that pf.index_at pos = ix.

	
theorem playfield.pos_from_index_at'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, round-tripping to get the
pf.index_at (pf.pos_from' ix _ _) is exactly ix.

	
theorem playfield.pos_from_inv

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the partial inverse of
pf.pos_from is pf itself.

	
theorem playfield.pos_from_inv_index_at'

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the left inverse of pf.index_at
is pf.pos_from'.

	
theorem playfield.pos_from_occupied

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the position retrieved via
pf.pos_from means that the pf is occupied_at it.

	
theorem playfield.retains_injectivity

	Each index that is present on the playfield and appears only once,
appears only once after a move_piece.

	
theorem playfield.retains_pieces

	Pieces do not disappear after a move_piece.

	
theorem playfield.retains_surjectivity

	If every index and the empty square is present in the
pf : playfield m n ι, as given by a function.surjective pf
proposition, then each index is present on the playfield after a
move_piece.

	
def playfield.some_injective

	A playfield on which every index that appears, appears only once.

	
def playfield.some_injective_decidable

	Explicitly state that the proposition that pf.some_injective is
decidable, when the ι is itself decidable_eq.

	
theorem playfield.subsingleton_pos

	Given an injectivity condition of pf.some_injective, the type of
pos : pf.occupied_positions that identify a particular index is a
subsingleton.

	
theorem playfield.unique_of_injective

	When a pf : playfield m n ι is some_injective, every index
ix : ι ∈ pf exists in the pf uniquely.

	
theorem playfield.unique_of_occupied

	When a pf : playfield m n ι is some_injective, every
pos : pf.occupied_positions maps to a unique index via pf pos.

	
theorem playfield.unique_pos

	Given a surjectivity condition of pf.index_at, and an injectivity
condition of pf.some_injective, the type of
pos : pf.occupied_positions that identify a particular index is a
unique.

chess.utils

Helpers that don’t currently fit elsewhere…

	
def matrix_repr

	For a matrix X^(m' × n') where the X has a has_repr
instance itself, we can provide a has_repr for the matrix, using
vec_repr for each of the rows of the matrix. This definition is used
for displaying the playfield, when it is defined via a matrix,
likely through notation.

	
def matrix_repr_instance

	

	
def option_wrap

	Construct an option_wrapper term from a provided option X and
the string that will override the has_repr.repr for none.

	
constant option_wrapper

	An auxiliary wrapper for option X that allows for overriding the
has_repr instance for option, and rather, output just the value
in the some and a custom provided string for none.

Fields:

	
field val

	

	
field none_s

	

	
def vec_repr

	For a “vector” X^n' represented by the type
Π n' : ℕ, fin n' → X, where the X has a has_repr instance
itself, we can provide a has_repr for the “vector”. This definition
is used for displaying rows of the playfield, when it is defined via a
matrix, likely through notation.

	
def vec_repr_instance

	

	
def wrapped_option_repr

	

	
theorem split_eq

	

guarini

“Proof” of Guarini’s Problem: swapping some knights.

Given a board like:

♞ _ ♞
_ _ _
♘ _ ♘

Guarini’s problem asks for a sequence of moves that swaps the knights,
producing:

♘ _ ♘
_ _ _
♞ _ ♞

Solution:

♞ _ ♞ ♞ _ ♞ ♞ _ _ ♞ _ ♘ _ _ ♘
_ _ _ → ♘ _ _ → ♘ _ _ → _ _ _ → _ _ ♞
♘ _ ♘ ♘ _ _ ♘ ♞ _ ♘ ♞ _ ♘ ♞ _

 _ ♘ ♘ _ _ ♘ _ _ ♘ _ _ ♘
 → _ _ ♞ → _ _ ♞ → ♘ _ ♞ → ♘ _ _
 _ ♞ _ _ ♞ ♘ _ ♞ _ ♞ ♞ _

 _ ♞ ♘ ♞ ♞ ♘ _ ♞ ♘ _ ♞ _
 → ♘ _ _ → ♘ _ _ → ♘ _ ♞ → ♘ _ ♞
 _ ♞ _ _ _ _ _ _ _ _ ♘ _

 ♘ ♞ _ ♘ ♞ ♘ ♘ ♞ ♘ ♘ _ ♘
 → ♘ _ ♞ → _ _ ♞ → _ _ _ → _ _ _
 _ _ _ _ _ _ ♞ _ _ ♞ _ ♞

	
def ending_position

	

	
def first_move

	

	
theorem guarini

	

	
def guarini_seq

	

	
def starting_position

	

Index

 nav.xhtml

 Table of Contents

 		
 Lean Across the Board

 		
 API Reference

 		
 chess.board

 		
 Definitions and theorems about a chess board

 		
 chess.move

 		
 Definitions and theorems about chess board movements

 		
 chess.move.legal

 		
 Legal chess move definitions and theorems

 		
 chess.piece

 		
 chess.playfield

 		
 Definitions and theorems about the chess board field

 		
 chess.utils

 		
 guarini

_static/file.png

_static/minus.png

_static/plus.png

